Navigation In GPS-Denied Environments Using Approximate Dynamic Programming
نویسنده
چکیده
Controlling a mobile vehicle to navigate in GPS-denied environments introduces a challenging partially observable control problem with complex constraints. This report presents a combination of various suboptimal control schemes such as open loop feedback control (OLFC), certainty equivalent control (CEC), model predictive control (MPC), and using expected values of estimates as full states to address the above problem. First, we review the connection between several rollout algorithms in dynamic programming and MPC. Second, the review of a recent fast and online method for MPC is provided. Finally, we present simulation results to demonstrate that a combination of the mentioned schemes can provide good suboptimal control policies to solve the above constrained navigation problem.
منابع مشابه
A Hierarchical SLAM/GPS/INS Sensor Fusion with WLFP for Flying Robo-SAR's Navigation
In this paper, we present the results of a hierarchical SLAM/GPS/INS/WLFP sensor fusion to be used in navigation system devices. Due to low quality of the inertial sensors, even a short-term GPS failure can lower the integrated navigation performance significantly. In addition, in GPS denied environments, most navigation systems need a separate assisting resource, in order to increase the avail...
متن کاملSampling-Based Real-Time Motion Planning under State Uncertainty for Autonomous Micro-Aerial Vehicles in GPS-Denied Environments
This paper presents a real-time motion planning approach for autonomous vehicles with complex dynamics and state uncertainty. The approach is motivated by the motion planning problem for autonomous vehicles navigating in GPS-denied dynamic environments, which involves non-linear and/or non-holonomic vehicle dynamics, incomplete state estimates, and constraints imposed by uncertain and cluttered...
متن کاملVisual-Inertial based autonomous navigation of an Unmanned Aerial Vehicle in GPS-Denied environments
متن کامل
Extracting Dynamics Matrix of Alignment Process for a Gimbaled Inertial Navigation System Using Heuristic Dynamic Programming Method
In this paper, with the aim of estimating internal dynamics matrix of a gimbaled Inertial Navigation system (as a discrete Linear system), the discretetime Hamilton-Jacobi-Bellman (HJB) equation for optimal control has been extracted. Heuristic Dynamic Programming algorithm (HDP) for solving equation has been presented and then a neural network approximation for cost function and control input ...
متن کاملDistributed Control and Navigation System for Quadrotor UAVs in GPS-Denied Environments
The problem of developing distributed control and navigation system for quadrotor UAVs operating in GPS-denied environments is addressed in the paper. Cooperative navigation, marker detection and mapping task solved by a team of multiple unmanned aerial vehicles is chosen as demo example. Developed intelligent control system complies with on 4D\RCS reference model and its implementation is base...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009